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Abstract 
 

Volatility is a significant parameter both in financial and real options valuation. However, 

in the case of several real option projects there is no historical data available. In such cases, 

one alternative is to use Monte Carlo simulation on projects’ cash flows for volatility 

estimation. An important issue that has not been taken into account with most of these 

volatility simulation procedures is that not only the volatility but also the value of the 

underlying asset is often uncertain with ambiguity in the beginning. Because most of the 

existing methods do not take this into account, they overestimate the actual volatility of the 

project. This paper presents a procedure that separates the underlying asset uncertainty in 

the beginning from the volatility and hence improves the volatility estimation. 
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1 Introduction 

Real options analysis is a framework for valuing managerial flexibility under uncertainty. 

It has adapted advanced methods from financial derivatives valuation and made valuation 

of projects with several sequential and parallel decision alternatives more accessible. 

Difficulty in volatility estimation, however, has hindered the success of the new valuation 

framework. Unlike with financial options, there is often no historical data available for 

volatility estimation. 

 

Several authors have suggested different variations of applying Monte Carlo simulation on 

cash flow calculation to estimate the volatility. The existing cash flow simulation based 

volatility estimation methods are the logarithmic present value approach of Copeland & 

Antikarov (2001) and Herath & Park (2002), conditional logarithmic present value 

approach of Brandão, Dyer & Hahn (2005), two-level simulation and least-squares 

regression methods of Godinho (2006), and generalized risk-neutral volatility estimation 

over different time periods (Hull 1997). All these methods are based on the same basic 

idea. Monte Carlo simulation technique is applied to develop a probability distribution for 

the rate of return. Then, the volatility parameter σ of the underlying asset is estimated by 

calculating the standard deviation of the rate of return. Another assumption related to all 

the methods is that the underlying asset value follows geometric Brownian motion (gBm). 

This means that the underlying asset may never have negative values and the terminal 

value distribution is lognormal by shape. 

 

Majority of the existing methods provide reliable estimates under optimal conditions. 

However, one aspect that has not been emphasized enough in previous research is that 

when doing a cash flow simulation for volatility estimation, the underlying asset value in 

the beginning may also have uncertainty in form of ambiguity. As a result, the previously 

mentioned methods provide upward biased volatility estimates if applied incorrectly under 

such circumstances. This is not an error in earlier methods because they are mostly 

intended to be used under classical and optimal conditions and boundaries of real options 

analysis with the principles of contingent claims analysis and the underlying asset value 

known in the beginning. However, as the original example of Copeland & Antikarov 

(2001, pp. 246-249) illustrates, the methods may also be intended to be used when there is 
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no precise knowledge of the underlying asset value in the beginning. Therefore, this paper 

presents an alternative yet easy and managerially applicable way to improve volatility 

estimation with cash flow based simulations. The procedure suggested here improves 

volatility estimation by separating the two different forms of uncertainty, volatility and 

ambiguity, from each other in the underlying asset value in the beginning. 

 

Firstly, differences between volatility and ambiguity are discussed. Secondly, the existing 

cash flow simulation volatility models with their properties are presented, as the procedure 

builds strongly on those ideas of earlier research. Thirdly, the consequence of having 

ambiguity in the underlying asset value with the previous methods is explained. Fourthly, a 

step-wise procedure for separating ambiguity and volatility in cash flow simulation based 

volatility estimation is presented. The solution mostly combines ideas from least-squares 

regression method of Godinho (2006) and generalized risk-neutral volatility estimation. 

Fifthly, the procedure is illustrated with a case example adapted from Copeland & 

Antikarov (2001). Case also analyzes how the existing volatility simulation procedures 

work in case of having ambiguity in the underlying asset value. Sixthly, e findings are 

contrasted to the results of the procedure suggested in this paper with theoretical 

considerations and managerial implications. Finally the conclusions are presented. 

 

2 Uncertainty, volatility and ambiguity 

There are several ways to classify different risks. Most of the financial derivative and real 

options research considers mostly volatility as a quantitiy of uncertainty. While this 

approach is often suitable for financial options, several projects related to real investments 

and real options also have uncertainty in a form on ambiguity. 

 

A common classification of uncertainties is related to the definition of first order 

uncertainty and second order uncertainty. First order uncertainty refers to the known 

uncertainty. This is very close to the Knight’s (1921) classical definition of risk, which 

refers to situations where the decision-maker can assign mathematical probabilities to the 

randomness which he is faced with. “A priori risk” means that the expected values can be 

computed and the probabilities are known in advance, such in as in case of a flip of an 

unbiased coin. “Statistical risk” means that the probability is justified empirical 

generalization with reference to a group. 
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Second order uncertainty refers to unknown uncertainty, or unknown unknown, where 

there is uncertainty about the definitions of uncertain states, probabilities or outcomes. In 

literature, this uncertainty is also referred as ambiguity, fuzziness, vagueness or lack of 

preciseness. Knight (1921) refers to estimates where the distinction to statistical risk is that 

there is no basis for statistical classifying instances. Then, decision-maker has to make 

estimates or judgments, which are liable to errors. The accuracy of estimates is affected by 

personal expertise and the nature of the subject to be estimated. 

 

In this paper, volatility is considered as an uncertainty of first order, i.e. known 

uncertainty, which can be objectively estimated either from historical data or from future 

values as implied volatility. In terms of Knight (1921), volatility is regarded as statistical 

risk. Ambiguity, as discussed here, refers to second order uncertainty, i.e. unknown 

unknown, which is by nature based on subjective estimates with no complete information 

available. Therefore, ambiguity is used in this paper as Knight (1921) refers to this as 

estimate uncertainty. Ambiguity is also often defined as an uncertainty about probability, 

created by missing information that could be known (Camerer & Weber, 1992). Further, 

according to the information ambiguity difference of non-existent and hidden information 

(Dequech 2000), ambiguity in this paper refers to information that is non-existent at the 

moment of decision making rather than hidden information that could be known by 

rational acquisition of information. On the other hand, fundamental uncertainty and 

complete ignorance are excluded from the definition of ambiguity in this context. This is in 

line with Davidson (1991) and Vickers (1994) arguing that not even subjective probability 

estimates should be used under fundamental uncertainty. 

 

As already noted by Knight (1921), since homogeneous classification of instances is 

practically never possible in dealing with statistical probability, difference between 

“statistical risk” and “estimate uncertainty” is often a matter of degree. The situation is the 

same with volatility and ambiguity. Table 1 summarizes the differences between volatility 

and ambiguity. 

 

 

 

 

 



 5

Table 1: Comparison of volatility and ambiguity uncerainty. 

Volatility Ambiguity 

• Available as market data (historical ex-

post data and futures implied volatility) 

• Observable, easily available to everyone 

• No precise data available 

• Mostly internal uncertainty 

• Continuous information update 

• Complete information 

• Less continuous stream of information,  

• Incomplete information, noise, ignorance 

• Allows risk-neutral hedging 

• Defined and valued by market 

mechanism 

• Market hedging hard 

• Not defined by market mechanism 

• Somewhat predictable 

• Objective estimate 

• Known unknown 

• First order uncertainty 

• Can be estimated statistically 

• Subjective estimate 

• Unknown unknown 

• Second order uncertainty 

• Resolving requires time, own effort 

 

Considering the topic from practical project valuation side, many new projects have 

significant ambiguity in the beginning. However, gradually more information comes 

available and future estimates become more reliable. However, whereas volatility resolves 

by itself with the passage of time, ambiguity resolves as a result of own work, learning and 

information gathering. As a result, subjective probability distributions will converge 

towards more objective probability distributions that can be said to exist. After that, major 

source of uncertainty can be regarded to be caused by volatility. 

 

3 Cash flow simulation based volatility estimation methods 

Volatility is probably the most difficult input parameter to estimate in real options analysis 

(Mun 2002), which is also the case with financial options. However, volatility estimation 

in case of financial options is easier because of the observable historical data and future 

price information. With real options, especially if related to R&D, there is not necessarily 

such information available (Lint & Pennings 1999, Newton & Pearson 1994). Therefore, 

volatility estimation has to be based on some other method. One alternative is to use Monte 

Carlo simulation for the gross present value and volatility estimation. According to 

Trigeorgis (1996), present value calculations may help in finding the correct volatility 

estimation for the project. Instead of having a marketed stock as an underlying asset, 

simulated gross present value is used. In this approach, forecast data for future cash values 

with probabilities is converted into an estimated underlying asset value and volatility 

(Newton & Pearson, 1994). 
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Six existing cash flow simulation based volatility estimation methods are presented in the 

following.  All the methods are based on the same basic idea. Firstly, Monte Carlo 

simulation technique is applied to develop a probability distribution for the rate of return. 

Secondly, the volatility parameter σ of the underlying asset is estimated by calculating the 

standard deviation of the rate of return. 

Logarithmic present value simulation approach (Copeland & Antikarov 

2001) 

The approach of consolidated volatility, logarithmic present value approach in terms of 

Mun (2002, 2003) was first introduced by Copeland and Antikarov (2001). The method 

relies on marketed asset disclaimer and Samuelson’s proof (1965) that correctly estimated 

rate of return of any asset follows random walk regardless of the pattern of the cash flows. 

The approach is based on the idea that an investment with real options should be valued as 

if it was a traded asset in markets even though it would not be publicly listed. According to 

Copeland and Antikarov (2001), the present value of the cash flows of the project without 

flexibility is the best unbiased estimate of the market value of the project were it a traded 

asset. This is called the marketed asset disclaimer assumption. Therefore, simulation of 

cash flows should provide a reliable estimate of the investment’s volatility. 

 

According to the Copeland & Antikarov (2001) approach, Monte Carlo simulation on 

project’s present value is used to develop a hypothetical distribution of one period returns. 

On each simulation trial run, the value of the future cash flows is estimated at two time 

periods, one for the first time period and another for the present time. The cash flows are 

discounted and summed to the time 0 and 1, and the following logarithmic ratio is 

calculated according to equation 1: 

 

1 1

0

ln
PV FCF

z
PV

 +
=  

 
     (1) 

 

where PV1 means present value at time t=1, FCF1 means free cash flow at time 1, and PV0 

project’s  present value at the beginning of the project at time t=0. Present value at each 

moment x can be calculated according to the following equation 2: 
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Then, volatility σ is defined as the standard deviation of z 

 

. ( )st dev zσ =      (3) 

 

The model simulated is a conventional present value calculation where uncertainties 

related to parameters are presented as objective or subjective distributions, constants, and 

times series with possible correlations. After the simulation, the mean and the standard 

deviation of the rate of return, i.e. volatility, are calculated. Modifications to this method 

include duplicating the cash flows and simulating only the numerator cash flows while 

keeping the denominator value constant. This reduces measurement risks of auto-

correlated cash flows and negative cash flows (Mun 2002), although they are still possible. 

Whereas simulating logarithmic cash flows gives a distribution of volatilities and therefore 

also a distribution of different real options values, this alternative gives a single-point 

estimate. 

 

The consolidated volatility approach is analogous to stock price simulations where the 

theoretical stock price is the sum of all future dividend cash payments, and with real 

options, these cash payments are the free cash flows. The sum of free cash flows’ present 

value at time zero is the current stock price (asset value), and at time one, the stock price in 

the future. The natural logarithm of the ratio of these sums is analogous to the logarithmic 

returns of stock prices. As stock price at time zero is known while the future stock price is 

uncertain, only the uncertain future stock price is simulated (Mun 2003). Of course, this 

does not allow for a negative outcome (or “bankruptcy”) for the company, whereas 

operating cash flows of a single R&D project may also have negatives values. 

 

Although the fundamental idea in Copeland & Antikarov (2001) approach is correct, it has 

one clear technical deficiency. The method would be appropriate volatility estimate if the 

PV1 were period 1’s expected NPV of subsequent cash flows and this volatility would 

reflect the resolution of a single year’s uncertainty and its impact on expectations for future 

cash. However, in Copeland & Antikarov’s solution this PV1 is the NPV of a particular 
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realization of future cash flows that is generated in the simulation, and therefore the 

calculated standard deviation is the outcome of all future uncertainties (Smith 2005). 

Therefore the approach overestimates the volatility. 

 

Herath & Park (2002) volatility estimation is very similar to Copeland & Antikarov (2001) 

and is based on the same equations 1 and 2. The only difference in notation is that instead 

of PV0, PV1 and FCF1, Herath & Park use MV0, MV1 and A1. However, whereas in 

Copeland & Antikarov (2001) only the numerator is simulated and the denominator is kept 

constant, Herath & Park (2002) applies simulation of both the numerator and denominator 

with different independent random variables: “…both MV0 and MV1 are independent 

random variables. Therefore, a different set of random number sequences has to be 

generated when calculating MV0 and MV1”. However, this alternative has the same over-

estimation problem as the original Copeland & Antikarov (2001), and it also causes 

additional error by having a non-constant denominator. 

Conditional volatility estimation of Brandão, Dyer & Hahn (2005)  

Other authors have resolved the original problem of Copeland & Antikarov’s approach. 

Conditional volatility estimation of Brandão, Dyer & Hahn (2005), based on comments of 

Smith (2005), suggests an alternative where the Copeland & Antikarov (2001) simulation 

model is changed so that only the first year’s cash flow C1 is stochastic, and C2,…,Cn are 

specified as expected values conditional on the outcomes of C1. Thus, the only variability 

captured in PV1 is due to the uncertainty resolved up to that point. The method works well, 

if the conditional future values are straightforward to calculate or estimate. Then, the 

standard deviation of the following equation 4 is used to estimate the volatility σ of the rate 

of return: 

 

1 1 1 2 1 1
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    (4)

  

The deficiency with the method is that it may be hard to compute the expected future 

values given the values simulated in earlier periods. This is true especially for both auto- 

and cross-correlated input variables in cash flow simulations. 
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Two-level simulation (Godinho 2006) 

Two-level simulation of Godinho (2006) is also based on the idea of conditionality in 

expected cash flows given stochastic C1. In comparison with CVE, it works also in 

situations where conditional outcomes given C1 can not be calculated analytically. Firstly, 

the simulation is done for the project behavior in the first year. Secondly, project behavior 

given the first year information is simulated for the rest of the project life cycle. Thirdly, 

average cash flows after the first year is used to calculate PV1, which is then used to 

calculate a sample of z. Finally, volatility of z (standard deviation) is calculated. The 

method mostly suffers from required computation time. This is because the calculation is 

iterative, meaning that after each first year simulation, a large number of second stage 

simulation is required. Therefore, the total number of simulations is the product of first and 

second stage simulation runs. In practice, whereas other methods compute the volatility 

within a few seconds even with larger models, this procedure requires at least several 

minutes of computation time with present computers and algorithms. Secondly, the method 

requires somewhat programming skills. 

Least squares regression method (Godinho 2006) 

Inspired by Longstaff & Schwartz (2001), Godinho (2006) presents least squares 

regression method for volatility estimation. This procedure consists of two simulations. In 

the first simulation, the behavior of the project value and the first year information is 

simulated. Then, PV1 is explained with linear regression with first year information as 

follows according to equation 5: 

 

�
1 0 1 1 2 2 ... n nPV a b X b X b X= + + + +     (5) 

 

Then, in the second simulation round, volatility is calculated as the standard deviation of z 

 

�
1
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=   

 
     (6) 

 

Often a good and straightforward approximation is to use first year cash flow C1 as the 

explaining variable with intercept term. Then, in the second simulation round, only first 
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year cash flow is simulated, and the estimation model is used to calculate the expected 

value of PV1 for calculating the sample z. 

Generalized risk neutral valuation approach 

There is another very effortless method for finding the volatility. It is based on the 

assumptions and qualities of the gBm and its lognormal underlying asset value distribution. 

Very similar thoughts are presented by Smith (2005) suggesting that correct 

parameterization for the mean value and volatility could be found by changing the 

volatility until the underlying asset mean and standard deviation match the simulated cash 

flow and its standard deviation. However, if common gBm assumptions hold, this can 

actually be solved analytically. 

 

Given that PV0 is known, and it is possible to simulate future cash flows, true or risk-

neutral distribution of the cash flows in future can be simulated. As well as discounting all 

the cash flows to the present value, they can also be undiscounted to their future value. 

Because the present value of cash flows is known (PV0), and we also know the 

undiscounted future value of the investment and its standard deviation, it is possible to find 

the volatility parameter analytically without any unnecessary additional computations and 

simulations. It is known that for financial assets, the asset value increases with time 

according to the equation 7, and that the standard deviation of the process increases 

according to the equation 8. 
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Using equation 8, it is straightforward to calculate the annualized volatility: 
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The information which is required is the length of time period T for volatility estimation, 

value of the asset S0 in the beginning, interest rate µ, and St.Deve standard deviation of the 

asset value at the end of volatility estimation period. Interest rate µ does not change the 

volatility estimation as long as the same interest rate is used both in cash flow simulation 

and when computing the volatility. Therefore, even if the risky expected return is used in 

volatility estimation, the option valuation still follows risk-neutral pricing with risk-free 

interest rate used. 

 

To summarize the findings of the six presented cash flow simulation based volatility 

methods, four of them actually provide correct results given ordinary assumptions of gBm 

hold, whereas two of the volatility calculation approaches, i.e. Copeland & Antikarov 

(2001) and Herath & Park (2002) have technical errors as suggested to be implemented by 

the original authors. Four other methods, conditional volatility estimation, two-level 

simulation, least-squares volatility simulation and generalized risk-neutral volatility 

calculation provide a correct estimation for volatility given ordinary assumptions of gBm 

and constant volatility. However, only two of the methods, least-squares regression method 

and generalized risk-neutral approach are sufficiently straightforward to be applied in the 

majority of the cases. 

 

4 Effect of ambiguity in underlying asset value in volatility 

estimation 

To summarize the findings of previous section, four of the six methods, conditional 

volatility estimation, two-level simulation, least-squares volatility simulation and 

generalized risk-neutral volatility calculation provide more often reliable volatility 

estimation than the other alternatives given ordinary assumptions of gBm and constant 

volatility. However, only two of the methods, least-squares regression method and 

generalized risk-neutral approach are sufficiently straightforward to be applied in the 

majority of the cases. 

  

In earlier research the problem of upward biased volatility estimation in Copeland & 

Antikarov (2001) approach was considered to be caused mostly by the erroneous 

calculation of PV1 in most cases (Smith 2005, Brandão et al. 2005, Godinho 2006), but the 

effect of ambiguity was not considered. Brandão et al. (2005) apply their method with a 
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case related to the commodity industry, where the underlying asset value in the beginning 

is sufficiently well known. Godinho (2006) does not either illustrate the use the model in 

actual case setups, so the ambiguity problem is not topical either in his research.  

 

All the volatility estimation methods presented in the previous chapter assume that the 

underlying asset value is constant and known in the beginning. This is true for financial 

options, where the underlying asset value is objectively available as stock market price. 

The same assumption of precisely known underlying asset value is also done with most 

real options cases, although no practitioner would argue that the calculated underlying 

asset value based on simulated cash flows case of real options would be perfectly accurate. 

If the values of the simulated cash flow calculation components are not perfectly known in 

the beginning, also the underlying asset value is not perfectly known and has ambiguity. 

Then the problem is that both ambiguity and volatility in underlying asset value are 

miscalculated as belonging to the volatility estimation between time periods for measuring 

the changes in underlying asset value spread, whereas only the volatility should be 

included to the estimation. If the time period used for volatility estimation is short in such 

cases, the volatility is over-estimated. If the same constant volatility calculated that way is 

used over several time periods, the overall uncertainty in the project is strongly over-

estimated. The following Graph 1 demonstrated what would happen if these methods were 

used without caution in such cases that also have ambiguity. 

 

Graph 1: Illustration of how existing cash flow simulation based volatility estimation procedures of 

Copeland & Antikarov (2001), Herath & Park (2002), Brandão et al. (2005), and Godinho (2006) over-

estimate the volatility because of assuming constant present value in the beginning although it is often 

actually has uncertainty both in form of volatility and ambiguity.  
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In graph 1, the red bracket C on the left shows the deviation of the project value in year 

one. The black continuous lines illustrate the deviation of the underlying asset value during 

the four years according to the simulation forecast. This deviation is caused both by 

volatility and ambiguity. The dotted gray cone inside black lines is the actual deviation 

caused by volatility. Point A is expected project present value at time zero. Conditional 

volatility estimation, two-level simulation, and least-squares regression estimate assume 

this to be a constant number denominator. All of these methods calculate volatility as the 

standard deviation of the rate of return between present value in the beginning (point A) 

and year one (red bracket C). The deviation in underlying asset value computation is 

depicted with the continuous red cone between time zero and year one. However, the 

actual volatility should be calculated with the same formula according to the inner gray 

bracket B. Because the simulation procedure does not recognize the difference between 

ambiguity and volatility, it combines them both into volatility estimation. Therefore, 

existing volatility estimations give upward biased answers. 

 

The question is whether this matters in practice. If we are only interested in knowing the 

project value after year one, the decision maker does not necessarily need to know which 

part of the uncertainty is related to volatility and which into ambiguity. However, the 

situation changes if we consider a time period longer than one year. If the underlying 

process is assumed to follow gBm with constant volatility and the volatility is estimated 

according to the methods discussed, the underlying asset in future deviates as presented 

according to the red dash line between year 1 and year 4. As the results indicate, this 

clearly over estimates the actual volatility. The difference between the deviation of correct 

process (bracket D) and the deviation of the process suggested by the methods (bracket E) 

can be significant. 

 

Generalized risk-neutral valuation model when applied for a short time period has the same 

problem. However, the situation is very different if the method is applied for a longer time 

period. Graph 2 describes how the method calculates volatility in the case of a four year 

project. The approach is suitable in case of a longer time period, because the actual 

volatility increases annually, as presented by gray dotted cone D, but the ambiguity, 

difference between the black continuous line and the gray dotted cone, remains constant. 

The proportion of ambiguity in comparison with volatility diminishes with time in 

comparison with other methods. 
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The volatility is calculated as the standard deviation of the rate of return between point A2 

and year four (blue bracket E2). If this is annualized, the volatility in year one is the 

standard deviation of the rate of return between point A2 and year one (blue bracket B2). 

As the comparison of Graph 1 and Graph 2 indicates, the difference is significant, and it 

can be stated that generalized risk-neutral volatility estimation provides results that are 

much more reliable in comparison with earlier discussed methods of conditional volatility 

estimation, two-level simulation and least-squares regression estimation. 

 

 

Graph 2: Illustration of how generalized risk-neutral volatility estimation calculates the volatility. The 

method provides more reliable results in the longer time period than other existing methods.  

 

Although the generalized risk-neutral valuation may seem to be a better alternative for 

volatility estimation than the other methods discussed, it doesn’t solve the actual problem 

of difference between ambiguity and volatility. The procedure only mitigates the problem 

of ambiguity when the time period used for the volatility estimation is longer. Secondly, 

even if the single constant volatility calculated with the method would provide more 

reliable answer than the other methods, it does not describe the actual volatility and the 

stochastic process of the underlying over all time periods. A more realistic description of 

the process would be to have ambiguity in the beginning in underlying asset value, and 

then have a smaller volatility depicting the actual changes in the process when the 

ambiguity in the underlying asset value has diminished. This kind of modeling alternative 

would be both theoretically and managerially more precise and understandable by 

following the actual behavior of the underlying asset. 
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5 Procedure for separating underlying asset value ambiguity 

and volatility  

Fortunately, the distinction between the ambiguity and volatility can be done by combining 

the use of the generalized risk-neutral volatility estimation and the use of the least-squares 

regression of Godinho (2006). Later on, the same steps are illustrated with a case example 

adapted from Copeland & Antikarov (2001). The numbers in Graph 3 show in which stage 

and in which order the parameter values are estimated. 

 

The procedure starts by constructing a cash flow model. This is a conventional gross 

present value calculation (net present value calculation less investments) where 

uncertainties related to parameters are presented as subjective distributions with possible 

auto- and cross-correlations instead of having only single-point estimations. 

 

In the first stage, the cash flow model is simulated and the standard deviation of the 

terminal value distribution st.dev(PVe) in time Te is calculated. Also a regression model is 

made having the time period one T1 cash flow C1 as an explanatory variable, which is used 

to explain the present value PV1 in the following stage. Time T1 is chosen so that most of 

the ambiguity is known to be solved by that time. Also, the expected value of the 

underlying asset for each time period is calculated, although its precise value in the 

beginning is not actually known because of the ambiguity. 

 

In the second stage, simulation is re-run, and the standard deviation of PV1 is estimated 

with the regression model constructed in the previous stage. This standard deviation is 

caused both by volatility and ambiguity. In third stage, knowing both the st.dev(PV1) and 

st.dev(PVe), it is possible to find numerically what constant volatility would be required to 

cause the increase from st.dev(PV1) to the st.dev(PVe) between time periods of T1 and Te.. 

This can be done for example with a non-recombining binomial tree model used to model 

changing volatilities. This is illustrated by 3a in Graph 3. 

 

Now, the volatility from time period T1 until Te is known, and an assumption can be made 

that the volatility would be the same also for the time period between T0 and T1. If this 

holds, the change in standard deviation caused by volatility in this time period can be 

calculated using the equation 8. The standard deviation in time period not explained by the 
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volatility can be considered to be caused by ambiguity, which can be computed by 

subtracting the standard deviation caused by the volatility from overall standard deviation 

during the time period (3c). Finally, the ambiguity in the beginning T0 can be computed by 

discounting the st.devα(PV1) with risk-free interest rate (3d). 

 

T1 TeT0 Time

Mean
Volatility σ

St.dev (σ+α)

St.devσ (volatility)
St.devα (ambiguity)

1 11

1

3a3b

3a
3c

st.dev(PVe) 

3d

3d

α0

2

Value

 

Graph 3: Illustration of the procedure for separating underlying asset value ambiguity and volatility.  

 

Actually difference between volatility and ambiguity for the time period between T0 and T1 

is not known, nor is the value of the underlying asset. This is because of the ambiguity and 

the fact that second order uncertainty makes it often difficult to make a distinction between 

first and second order uncertainty in estimation. However, the method reveals in practice 

the ambiguity related to the underlying asset value in the beginning, and it also shows what 

will be the expected volatility after certain time (T1) when also the value of the underlying 

asset is more explicitly. 

  

The valuation procedure presented is very similar to the cases with changing volatility. 

However, it should be remembered that the volatility estimation methods presented in 

previous research do not make a difference ambiguity and volatility. It may not have 

impact on actual decision making, but it would be better to distinguish two different 
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phenomena from each other. The most important practical value of this procedure is that 

under ambiguity, it provides a more reliable volatility estimation method than earlier cash 

flow methods of conditional volatility estimation (Brandão et al. 2005), generalized risk-

neutral volatility estimation, and both two-level simulation and least-squares regression 

estimation (Godinho 2006), which do not take into account the possibility of ambiguity in 

the underlying asset value. 

 

6 Case example 

This chapter illustrates the use of the procedure presented in the previous chapter can how 

it can be used in practice. Although the research idea and results were originally developed 

in a real life case, the case presented in Copeland & Antikarov (2001, pp. 246-249) is used 

instead. Godinho (2006) uses the same example in his research, and therefore it is possible 

to compare the findings with the original results of Copeland & Antikarov (2001), Herath 

& Park (2002), Godinho (2006) and Brandão et al. (2005) with an example already familiar 

in the field of real options. 

 

Table 2 presents the cash flow calculation of the Copeland & Antikarov (2001) case. Each 

Price/unit is assumed to be lognormally distributed with standard deviation of 10 % from 

the mean value presented in the first row. Secondly, the prices are auto-correlated with a 

coefficient of 90 percent. Risk-free interest rate is 5 % and weighted average cost of capital 

used for discounting is 12%. Therefore, present value of the cash flows is 1508. 

 

Table 2: Cash flow calculation of Copeland & Antikarov (2001) case. 

Year 1 2 3 4 5 6 7

Price/unit 10 10 9,5 9 8 7 6

Quantity 100 120 139 154 173 189 200

Variable cost/unit 6 6 5,7 5,4 4,8 4,2 3,6

Revenue 1000 1200 1321 1386 1384 1323 1200

  - Variable cash costs -600 -720 -792 -832 -830 -794 -710

  - Fixed cash costs -20 -20 -20 -20 -20 -20 -20

  - Depreciation -229 -229 -229 -229 -229 -229 -229

EBIT 151 231 279 305 305 280 241

  - Taxes -60 -92 -112 -122 -122 -112 -96

 + Depreciation 229 229 229 229 229 229 229

  - Increase in working capital -200 -40 -24 -13 0 13 24

Cash flow 120 328 373 399 412 410 398
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The volatility estimations provided by different alternatives are presented in the Graph 4 

and Table 3. Methods of Copeland & Antikarov (2001) and Herath & Park (2002) provide 

the highest estimations for volatility, which can be explained both by the earlier explained 

deficiencies in the methods but also by the ambiguity in the underlying asset value in the 

beginning. Conditional volatility estimation, two-level simulation and least-squares 

regression estimation provide the same result, but they also suffer from the uncertain 

underlying asset value. Generalized risk-neutral estimation method actually provides a 

result which is very close to the actual simulated risk-neutral distribution. 
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Graph 4: Terminal value distributions with volatilities given by different methods in comparison with 

actual simulated terminal value distribution in Copeland & Antikarov (2001) case. Only generalized 

risk-neutral estimation provides a result that is very close to the actual distribution, whereas other 

methods have much more deviation. Results of the conditional volatility estimation of Brandão et al. 

(2005) and two-level simulation of Godinho (2006) are the same as the results of least squares 

regression method, and therefore they are not shown in the graph. 
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Table 3: Results provided by different volatility estimation methods in Copeland & Antikarov (2001) 

case. Most of the methods over-estimate the volatility because they do not take into account the 

ambiguity in the underlying asset value. If upward biased volatility estimate is used for modelling a 

project with longer timespan, it will cause overestimation of the project’s value. 

Volatility estimation method with authors Volatility

logarithmic present value estimation of Copeland & Antikarov (2001) 20,8 %

logarithmic present value estimation of Herath & Park (2002) 29,3 %

conditional volatility estimation of Brandão et al. (2005) 17,6 %

two-level simulation of Godinho (2006) 17,6 %

least squares regression estimation of Godinho (2006) 17,6 %

generalized risk-neutral estimation (Hull 1997) 7,7 %

 

Unfortunately, the good match with the volatility fitting in comparison with the standard 

deviation of the terminal value distribution doesn’t yet describe how the underlying asset 

value changes during process. Therefore, the procedure presented in this paper is used for 

the volatility and ambiguity estimation. 

 

Firstly, the cash flow simulation was constructed. The standard deviation of the terminal 

value distribution in risk-neutral world was computed and found to be 435. Then, the 

regression analysis was performed according to equation 5. The corresponding equation for 

the PV1 estimation according to this was found to be PV1 = 1032 + 5,18*C1. Applying 

equation 6, volatility for the first year was 17.7 %, and the standard deviation of the PV1 

was 283. 

 

Knowing both the st.dev(PV1) and st.dev(PVe), the volatility for the time period from T1 to 

T7 was calculated with to be 4.1 %. Assuming that the volatility would be the same during 

the whole life of the project, it was possible to calculate how much volatility causes 

standard deviation in PV1 with equation 8. Volatility causes standard deviation of 65, and 

therefore the ambiguity causes standard deviation of 275 (subtracting volatility from the 

st.dev(PV1) 27565283 22
≈− ). 

 

Graph 5 illustrates how the project’s PV and its deviation is assumed to change with time 

according to generalized risk-neutral valuation with constant volatility and according to the 

procedure presented here considering the effect of ambiguity. As the percentiles show, the 
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difference is significant during the first years, but closer to the expiration both methods 

provide the same results. The results are very similar as in the case of the diminishing 

volatility. Generally, it can be stated that the effect of the ambiguity in valuation is very 

dependent on the timing of investment outlays. If the ambiguity is revealed before the 

significant investments have been made, it does not have a negative impact on the project 

value. 
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Graph 5: Illustration of how the project’s present value and its deviation as a consequence of volatility 

is assumed to change with time according to generalized risk-neutral valuation with constant volatility 

(grey lines) and according to the procedure presented here considering the effect of ambiguity (black 

lines). The dotted black lines show what is the standard deviation during the first year caused by 

ambiguity. As the percentiles show, the difference is significant during the first years, but closer to the 

expiration both methods provide the same results. 

 

7 Results and discussion  

This paper presents a procedure that separates the underlying asset uncertainty in form of 

ambiguity in the beginning from the volatility and hence improves the volatility estimation. 

The step-wise solution combines ideas from least-squares regression method of Godinho 

(2006) and generalized risk-neutral volatility estimation. The case example results 

illustrate the importance of the topic. If the ambiguity is taken into account, most of the 

existing volatility estimation methods based on Monte Carlo simulation over-estimate the 
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volatility. This result also confirms the fact that practitioners should be careful when 

applying methods originally developed for financial option valuation into the cases of real 

option valuation. 

 

It may be argued that the same valuation results could be found by applying a changing 

volatility structure and regarding all the uncertainty to be volatility. However, it should be 

recognized that the phenomenon that is called ambiguity in the underlying asset – not 

knowing the actual value of the underlying asset or volatility in the beginning – is a 

different kind of uncertainty compared to volatility. In the case of ambiguity, uncertainty 

related to a project is typically not revealed until a certain amount of time and with own 

work and learning. Volatility illustrates the continuously fluctuating external and 

observable uncertainty that does not dissolve completely during the projects lifespan. Also, 

some of the volatility can be at least partially hedged, whereas hedging of ambiguity is 

very complicated if not impossible. Admittedly, the separation of ambiguity and volatility 

is somewhat artificial, but it is nevertheless justified given that there are also cases with 

actually changing and objectively observable uncertainty in form of volatility. Thus, the 

concepts of volatility and ambiguity should be kept theoretically apart. 

 

It may also be managerially constructive to know how much of the uncertainty is actually 

related to ambiguity and how much of the uncertainty can be regarded to be caused by 

volatility. The proportion of ambiguity in comparison to volatility can be considered to 

provide information about the precision and subjectivity of the valuation. This distinction 

is also managerially important as it indicates to the sophisticated decision-maker that the 

volatility estimation and the project valuation on the whole under ambiguity is more 

vulnerable to subjective errors in comparison with the results of well structured solutions 

based on contingent claims analysis. 

 

No research and constructed methods are without their limitations. The procedure 

presented in this paper separates volatility and ambiguity technically from each other, but 

both of these uncertainties are still conceptually as well as mathematically somewhat 

imprecise and vague. Both of these estimations are also based on the cash flow simulation, 

which may have highly subjective estimates. Also, the separation of ambiguity and 

volatility is such that it cannot completely categorize which part of the uncertainty is 

purely related to volatility and which part to the ambiguity. The method does not tell 
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precisely what is the proportion of ambiguity and volatility during the first time period 

until the ambiguity is revealed. After most of the uncertainty is revealed, between time 

period T1 and maturity, all the uncertainty is regarded to be volatility, although this 

uncertainty estimation of volatility actually still has some ambiguity embedded. Also the 

use of the constant volatility estimation instead of time-varying and underlying asset value 

dependent volatility may be regarded something that should be considered more carefully 

in case of volatility estimation. 

 

8 Conclusions 

Uncertainty in the form of ambiguity in underlying asset value causes upward biased 

volatility estimations with the existing cash flow simulation based models. The reason for 

this bias is that the methods assume that the present value of the operating cash flows is a 

known constant. This paper presented a step-wise procedure for separating ambiguity and 

volatility from each other to reduce the risk of miscalculating the volatility. The solution 

procedure constructed is mostly based on the least-squares regression method of Godinho 

(2006) and generalized risk-neutral volatility estimation. The procedure was illustrated 

with a case example adapted from Copeland & Antikarov (2001). The case also illustrated 

how the existing volatility estimation procedures work in case of having ambiguity in the 

underlying asset value. Separating ambiguity and volatility is conceptually relevant 

because these two forms of uncertainty are different by nature and require different 

management approach. The results also confirm that practitioners should be careful when 

applying methods originally developed for financial option valuation into the cases of real 

option valuation. 
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